A diversity index derived from information theory, appropriate for fully censused communities.
Usage
brillouin(counts, margin = 1L, cpus = n_cpus())Arguments
- counts
A numeric matrix of count data (samples \(\times\) features). Typically contains absolute abundances (integer counts), though proportions are also accepted.
- margin
The margin containing samples.
1if samples are rows,2if samples are columns. Ignored whencountsis a special object class (e.g.phyloseq). Default:1- cpus
How many parallel processing threads should be used. The default,
n_cpus(), will use all logical CPU cores.
Details
The Brillouin index is defined as: $$\frac{\ln{[(\sum_{i = 1}^{n} X_i)!]} - \sum_{i = 1}^{n} \ln{(X_i!)}}{\sum_{i = 1}^{n} X_i}$$
Where:
\(n\) : The number of features.
\(X_i\) : Integer count of the \(i\)-th feature.
Base R Equivalent:
Input Types
The counts parameter is designed to accept a simple numeric matrix, but
seamlessly supports objects from the following biological data packages:
phyloseqrbiomSummarizedExperimentTreeSummarizedExperiment
For large datasets, standard matrix operations may be slow. See
vignette('performance') for details on using optimized formats
(e.g. sparse matrices) and parallel processing.
See also
Other Diversity metrics:
fisher(),
inv_simpson(),
shannon(),
simpson()
