Calculates the Euclidean distance between centered log-ratio (CLR) transformed abundances.
Usage
aitchison(
counts,
margin = 1L,
pseudocount = NULL,
pairs = NULL,
cpus = n_cpus()
)Arguments
- counts
A numeric matrix of count data (samples \(\times\) features). Typically contains absolute abundances (integer counts), though proportions are also accepted.
- margin
The margin containing samples.
1if samples are rows,2if samples are columns. Ignored whencountsis a special object class (e.g.phyloseq). Default:1- pseudocount
Value added to counts to handle zeros when
norm = 'clr'. Ignored for other normalization methods. See Pseudocount section.- pairs
Which combinations of samples should distances be calculated for? The default value (
NULL) calculates all-vs-all. Provide a numeric or logical vector specifying positions in the distance matrix to calculate. See examples.- cpus
How many parallel processing threads should be used. The default,
n_cpus(), will use all logical CPU cores.
Details
The Aitchison distance is defined as: $$\sqrt{\sum_{i=1}^{n} [(\ln{X_i} - X_L) - (\ln{Y_i} - Y_L)]^2}$$
Where:
\(X_i\), \(Y_i\) : Absolute counts for the \(i\)-th feature.
\(X_L\), \(Y_L\) : Mean log of abundances. \(X_L = \frac{1}{n}\sum_{i=1}^{n} \ln{X_i}\).
\(n\) : The number of features.
Base R Equivalent:
Pseudocount
Zeros are undefined in the Aitchison (CLR) transformation. If
pseudocount is NULL (the default) and zeros are detected,
the function uses half the minimum non-zero value (min(x[x>0]) / 2)
and issues a warning.
To suppress the warning, provide an explicit value (e.g., 1).
Why this matters: The choice of pseudocount is not neutral; it acts as a weighting factor that can significantly distort downstream results, especially for sparse datasets. See Gloor et al. (2017) and Kaul et al. (2017) for open-access discussions on the mathematical implications, or Costea et al. (2014) for the impact on community clustering.
Input Types
The counts parameter is designed to accept a simple numeric matrix, but
seamlessly supports objects from the following biological data packages:
phyloseqrbiomSummarizedExperimentTreeSummarizedExperiment
For large datasets, standard matrix operations may be slow. See
vignette('performance') for details on using optimized formats
(e.g. sparse matrices) and parallel processing.
References
Aitchison, J. (1986). The statistical analysis of compositional data. Chapman and Hall. doi:10.1007/978-94-009-4109-3
Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological), 44(2), 139-160. doi:10.1111/j.2517-6161.1982.tb01195.x
Costea, P. I., Zeller, G., Sunagawa, S., & Bork, P. (2014). A fair comparison. Nature Methods, 11(4), 359. doi:10.1038/nmeth.2897
Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V., & Egozcue, J. J. (2017). Microbiome datasets are compositional: and this is not optional. Frontiers in Microbiology, 8, 2224. doi:10.3389/fmicb.2017.02224
Kaul, A., Mandal, S., Davidov, O., & Peddada, S. D. (2017). Analysis of microbiome data in the presence of excess zeros. Frontiers in Microbiology, 8, 2114. doi:10.3389/fmicb.2017.02114
See also
beta_div(), vignette('bdiv'), vignette('bdiv_guide')
Other Abundance metrics:
bhattacharyya(),
bray(),
canberra(),
chebyshev(),
chord(),
clark(),
divergence(),
euclidean(),
gower(),
hellinger(),
horn(),
jensen(),
jsd(),
lorentzian(),
manhattan(),
matusita(),
minkowski(),
morisita(),
motyka(),
psym_chisq(),
soergel(),
squared_chisq(),
squared_chord(),
squared_euclidean(),
topsoe(),
wave_hedges()
