A weighted version of the Manhattan distance, sensitive to differences when both values are small.
Usage
canberra(
counts,
margin = 1L,
norm = "none",
pseudocount = NULL,
pairs = NULL,
cpus = n_cpus()
)Arguments
- counts
A numeric matrix of count data (samples \(\times\) features). Typically contains absolute abundances (integer counts), though proportions are also accepted.
- margin
The margin containing samples.
1if samples are rows,2if samples are columns. Ignored whencountsis a special object class (e.g.phyloseq). Default:1- norm
Normalize the incoming counts. Options are:
'none': No transformation.'percent': Relative abundance (sample abundances sum to 1).'binary': Unweighted presence/absence (each count is either 0 or 1).'clr': Centered log ratio.
Default:
'none'.- pseudocount
Value added to counts to handle zeros when
norm = 'clr'. Ignored for other normalization methods. See Pseudocount section.- pairs
Which combinations of samples should distances be calculated for? The default value (
NULL) calculates all-vs-all. Provide a numeric or logical vector specifying positions in the distance matrix to calculate. See examples.- cpus
How many parallel processing threads should be used. The default,
n_cpus(), will use all logical CPU cores.
Details
The Canberra distance is defined as: $$\sum_{i=1}^{n} \frac{|X_i - Y_i|}{X_i + Y_i}$$
Where:
\(X_i\), \(Y_i\) : Absolute abundances of the \(i\)-th feature.
\(n\) : The number of features.
Base R Equivalent:
Input Types
The counts parameter is designed to accept a simple numeric matrix, but
seamlessly supports objects from the following biological data packages:
phyloseqrbiomSummarizedExperimentTreeSummarizedExperiment
For large datasets, standard matrix operations may be slow. See
vignette('performance') for details on using optimized formats
(e.g. sparse matrices) and parallel processing.
Pseudocount
The pseudocount parameter is only relevant when norm = 'clr'.
Zeros are undefined in the centered log-ratio (CLR) transformation. If
norm = 'clr', pseudocount is NULL (the default), and
zeros are detected, the function uses half the minimum non-zero value
(min(x[x>0]) / 2) and issues a warning.
To suppress the warning, provide an explicit value (e.g., 1).
Why this matters: The choice of pseudocount is not neutral; it acts as a weighting factor that can significantly distort downstream results, especially for sparse datasets. See Gloor et al. (2017) and Kaul et al. (2017) for open-access discussions on the mathematical implications, or Costea et al. (2014) for the impact on community clustering.
See aitchison for references.
References
Lance, G. N., & Williams, W. T. (1966). Computer programs for hierarchical polythetic classification ("similarity analyses"). The Computer Journal, 9(1), 60-64. doi:10.1093/comjnl/9.1.60
See also
beta_div(), vignette('bdiv'), vignette('bdiv_guide')
Other Abundance metrics:
aitchison(),
bhattacharyya(),
bray(),
chebyshev(),
chord(),
clark(),
divergence(),
euclidean(),
gower(),
hellinger(),
horn(),
jensen(),
jsd(),
lorentzian(),
manhattan(),
matusita(),
minkowski(),
morisita(),
motyka(),
psym_chisq(),
soergel(),
squared_chisq(),
squared_chord(),
squared_euclidean(),
topsoe(),
wave_hedges()
