Weighted UniFrac beta diversity metric.
Usage
weighted_unifrac(counts, tree = NULL, pairs = NULL, cpus = n_cpus())
Arguments
- counts
An OTU abundance matrix where each column is a sample, and each row is an OTU. Any object coercible with
as.matrix()
can be given here, as well asphyloseq
,rbiom
,SummarizedExperiment
, andTreeSummarizedExperiment
objects.- tree
A
phylo
-class object representing the phylogenetic tree for the OTUs incounts
. The OTU identifiers given bycolnames(counts)
must be present intree
. Can be omitted if a tree is embedded with thecounts
object or asattr(counts, 'tree')
.- pairs
Which combinations of samples should distances be calculated for? The default value (
NULL
) calculates all-vs-all. Provide a numeric or logical vector specifying positions in the distance matrix to calculate. See examples.- cpus
How many parallel processing threads should be used. The default,
n_cpus()
, will use all logical CPU cores.
Calculation
Given \(n\) branches with lengths \(L\) and a pair of samples' abundances (\(A\) and \(B\)) on each of those branches:
$$D = \sum_{i = 1}^{n} L_i|\frac{A_i}{A_T} - \frac{B_i}{B_T}|$$
See vignette('unifrac')
for details and a worked example.
References
Lozupone CA, Hamady M, Kelley ST, Knight R 2007. Quantitative and Qualitative \(\beta\) Diversity Measures Lead to Different Insights into Factors That Structure Microbial Communities. Applied and Environmental Microbiology, 73(5). doi:10.1128/AEM.01996-06
See also
Other beta_diversity:
bray_curtis()
,
canberra()
,
euclidean()
,
generalized_unifrac()
,
gower()
,
jaccard()
,
kulczynski()
,
manhattan()
,
unweighted_unifrac()
,
variance_adjusted_unifrac()
,
weighted_normalized_unifrac()
Examples
# Example counts matrix
ex_counts
#> Saliva Gums Nose Stool
#> Streptococcus 162 793 22 1
#> Bacteroides 2 4 2 611
#> Corynebacterium 0 0 498 1
#> Haemophilus 180 87 2 1
#> Propionibacterium 1 1 251 0
#> Staphylococcus 0 1 236 1
# Weighted UniFrac distance matrix
weighted_unifrac(ex_counts, tree = ex_tree)
#> Saliva Gums Nose
#> Gums 37.08021
#> Nose 67.00360 55.56710
#> Stool 110.25564 109.96250 110.14056
# Only calculate distances for A vs all.
weighted_unifrac(ex_counts, tree = ex_tree, pairs = 1:3)
#> Saliva Gums Nose
#> Gums 37.08021
#> Nose 67.00360 NA
#> Stool 110.25564 NA NA