Bray-Curtis beta diversity metric.
Usage
bray_curtis(counts, weighted = TRUE, pairs = NULL, cpus = n_cpus())
Arguments
- counts
An OTU abundance matrix where each column is a sample, and each row is an OTU. Any object coercible with
as.matrix()
can be given here, as well asphyloseq
,rbiom
,SummarizedExperiment
, andTreeSummarizedExperiment
objects.- weighted
If
TRUE
, the algorithm takes relative abundances into account. IfFALSE
, only presence/absence is considered.- pairs
Which combinations of samples should distances be calculated for? The default value (
NULL
) calculates all-vs-all. Provide a numeric or logical vector specifying positions in the distance matrix to calculate. See examples.- cpus
How many parallel processing threads should be used. The default,
n_cpus()
, will use all logical CPU cores.
Calculation
In the formulas below, x
and y
are two columns (samples) from counts
.
n
is the number of rows (OTUs) in counts
.
$$D = \displaystyle \frac{\sum_{i = 1}^{n} |x_i - y_i|}{\sum_{i = 1}^{n} (x_i + y_i)}$$
References
Sorenson T 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content. Kongelige Danske Videnskabernes Selskab, 5.
See also
Other beta_diversity:
canberra()
,
euclidean()
,
generalized_unifrac()
,
gower()
,
jaccard()
,
kulczynski()
,
manhattan()
,
unweighted_unifrac()
,
variance_adjusted_unifrac()
,
weighted_normalized_unifrac()
,
weighted_unifrac()
Examples
# Example counts matrix
ex_counts
#> Saliva Gums Nose Stool
#> Streptococcus 162 793 22 1
#> Bacteroides 2 4 2 611
#> Corynebacterium 0 0 498 1
#> Haemophilus 180 87 2 1
#> Propionibacterium 1 1 251 0
#> Staphylococcus 0 1 236 1
# Bray-Curtis weighted distance matrix
bray_curtis(ex_counts)
#> Saliva Gums Nose
#> Gums 0.5905768
#> Nose 0.9601770 0.9704797
#> Stool 0.9916667 0.9906729 0.9926199
# Bray-Curtis unweighted distance matrix
bray_curtis(ex_counts, weighted = FALSE)
#> Saliva Gums Nose
#> Gums 0.11111111
#> Nose 0.20000000 0.09090909
#> Stool 0.33333333 0.20000000 0.09090909
# Only calculate distances for A vs all.
bray_curtis(ex_counts, pairs = 1:3)
#> Saliva Gums Nose
#> Gums 0.5905768
#> Nose 0.9601770 NA
#> Stool 0.9916667 NA NA