Skip to contents

A symmetrized and smoothed version of the Kullback-Leibler divergence.

Usage

jsd(counts, margin = 1L, pairs = NULL, cpus = n_cpus())

Arguments

counts

A numeric matrix of count data (samples \(\times\) features). Typically contains absolute abundances (integer counts), though proportions are also accepted.

margin

The margin containing samples. 1 if samples are rows, 2 if samples are columns. Ignored when counts is a special object class (e.g. phyloseq). Default: 1

pairs

Which combinations of samples should distances be calculated for? The default value (NULL) calculates all-vs-all. Provide a numeric or logical vector specifying positions in the distance matrix to calculate. See examples.

cpus

How many parallel processing threads should be used. The default, n_cpus(), will use all logical CPU cores.

Details

The Jensen-Shannon divergence (JSD) is defined as: $$\frac{1}{2}\left[\sum_{i=1}^{n}P_i\ln\left(\frac{2P_i}{P_i + Q_i}\right) + \sum_{i=1}^{n}Q_i\ln\left(\frac{2Q_i}{P_i + Q_i}\right)\right]$$

Where:

  • \(P_i\), \(Q_i\) : Proportional abundances of the \(i\)-th feature.

  • \(n\) : The number of features.

Base R Equivalent:

x <- ex_counts[1,]; p <- x / sum(x)
y <- ex_counts[2,]; q <- y / sum(y)
sum(p * log(2 * p / (p+q)), q * log(2 * q / (p+q))) / 2

Input Types

The counts parameter is designed to accept a simple numeric matrix, but seamlessly supports objects from the following biological data packages:

  • phyloseq

  • rbiom

  • SummarizedExperiment

  • TreeSummarizedExperiment

For large datasets, standard matrix operations may be slow. See vignette('performance') for details on using optimized formats (e.g. sparse matrices) and parallel processing.

References

Lin, J. (1991). Divergence measures based on the Shannon entropy. IEEE Transactions on Information Theory, 37(1), 145-151. doi:10.1109/18.61115

Examples

    jsd(ex_counts)
#>          Saliva      Gums      Nose
#> Gums  0.1137536                    
#> Nose  0.6319799 0.6276551          
#> Stool 0.6644036 0.6676786 0.6715003