A collection of transformations that operate directly on matrices.
Note: rarefy_cols(), rescale_rows(), and rescale_cols() are deprecated.
Usage
mtx_rarefy(
mtx,
margin = 2L,
depth = 0.1,
n = NULL,
seed = 0L,
upsample = NULL,
cpus = NULL
)
mtx_percent(mtx, margin = 2L)
mtx_rescale(mtx, margin = 2L, range = c(0, 1))
rarefy_cols(mtx, depth = 0.1, n = NULL, seed = 0L, cpus = NULL)
rescale_rows(mtx)
rescale_cols(mtx)Arguments
- mtx
A matrix-like object.
- margin
Apply the transformation to the matrix's rows (
margin=1L) or columns (margin=2L). Instead of1Land2L, you may also use'rows'and'cols'. Default:2L(column-wise, aka sample-wise for otu tables)- depth
How many observations to keep per sample. When
0 < depth < 1, it is taken as the minimum percentage of the dataset's observations to keep. Ignored whennis specified. Default:0.1- n
The number of samples to keep. When
0 < n < 1, it is taken as the percentage of samples to keep. If negative, that number or percentage of samples is dropped. If0, all samples are kept. IfNULL,depthis used instead. Default:NULL- seed
Random seed for permutations. Must be a non-negative integer. Default:
0- upsample
If the count data is in percentages, provide an integer value here to scale each sample's observations to integers that sum to this value. Generally not recommended, but can be used to 'shoehorn' metagenomic abundance estimates into rbiom's functions that were designed for amplicon datasets. When invoked,
depth,n, andseedare ignored. The default,NULL, will throw an error if the counts are not all integers.- cpus
The number of CPUs to use. Set to
NULLto use all available, or to1to disable parallel processing. Default:NULL- range
When rescaling, what should the minimum and maximum values be? Default:
c(0, 1)
Value
The transformed matrix. If mtx was a sparse matrix from the Matrix
package, then the result will also be a sparse matrix,
otherwise the result will be a base R matrix.
See also
Other transformations:
modify_metadata,
rarefy(),
slice_metadata,
subset(),
with()
Examples
library(rbiom)
# mtx_rarefy --------------------------------------
biom <- hmp50$clone()
sample_sums(biom) %>% head(10)
#> HMP01 HMP02 HMP03 HMP04 HMP05 HMP06 HMP07 HMP08 HMP09 HMP10
#> 1660 1371 1353 1895 3939 4150 3283 1695 2069 2509
biom$counts %<>% mtx_rarefy(depth=1000)
sample_sums(biom) %>% head(10)
#> HMP01 HMP02 HMP03 HMP04 HMP05 HMP06 HMP07 HMP08 HMP09 HMP10
#> 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
# rescaling ----------------------------------------
mtx <- matrix(sample(1:20), nrow=4)
mtx
#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 10 7 3 4 8
#> [2,] 12 15 5 13 16
#> [3,] 2 20 6 19 14
#> [4,] 18 9 17 1 11
colSums(mtx)
#> [1] 42 51 31 37 49
colSums(mtx_rarefy(mtx))
#> [1] 31 31 31 31 31
colSums(mtx_percent(mtx))
#> [1] 1 1 1 1 1
apply(mtx_rescale(mtx), 2L, max)
#> [1] 1 1 1 1 1
