QIIME 2
rbiom ➡ QIIME 2
In R, export QIIME 2-compatible files.
library(rbiom)
# where to save the files
project_dir <- tempdir()
write_qiime2(biom = hmp50, dir = project_dir, prefix = 'hmp50_')
This command creates files named
'hmp50_counts.tsv'
,'hmp50_metadata.tsv'
,'hmp50_taxonomy.tsv', 'hmp50_tree.nwk'
, and'hmp50_seqs.fna'
.
On the command line, convert files to QIIME 2 format (.qza).
# Convert classic BIOM table to HDF5
biom convert -i hmp50_counts.tsv -o hmp50_counts.hdf5 --to-hdf5
# Import counts
qiime tools import \
--input-path hmp50_counts.hdf5 \
--type 'FeatureTable[Frequency]' \
--input-format BIOMV210Format \
--output-path hmp50-counts.qza
# Import taxonomy
qiime tools import \
--input-path hmp50_taxonomy.tsv \
--type FeatureData[Taxonomy] \
--output-path hmp50-taxonomy.qza
# Import phylogenetic tree
qiime tools import \
--input-path hmp50_tree.nwk \
--type 'Phylogeny[Rooted]' \
--output-path hmp50-tree.qza
Examples: running unifrac and browsing metadata
QIIME 2 ➡ rbiom
On the command line, export data files from QIIME 2.
# Export a feature table, taxonomy, and tree
qiime tools export --input-path hmp50-counts.qza --output-path .
qiime tools export --input-path hmp50-taxonomy.qza --output-path .
qiime tools export --input-path hmp50-tree.qza --output-path .
These commands create files named
'feature-table.biom'
,'taxonomy.tsv'
, and'tree.nwk'
.
In R, import the data files into rbiom.
mothur
rbiom ➡ mothur
In R, export mothur-compatible files.
library(rbiom)
# where to save the files
project_dir <- tempdir()
write_mothur(biom = hmp50, dir = project_dir, prefix = 'hmp50_')
This command creates files named
'hmp50_counts.tsv'
,'hmp50_metadata.tsv'
,'hmp50_taxonomy.tsv', 'hmp50_tree.nwk'
, and'hmp50_seqs.fna'
.
At the mothur command prompt, import the BIOM data.
mothur > make.shared(count=hmp50_counts.tsv, label=asv)
mothur > unifrac.unweighted(tree=hmp50_tree.nwk, count=hmp50_counts.tsv)
The
make.shared()
command creates files named'hmp50_counts.asv.list'
and'hmp50_counts.asv.shared'
.
mothur ➡ rbiom
At the mothur command prompt, export a biom file.
mothur > make.biom( \
shared=hmp50_counts.asv.shared, \
constaxonomy=hmp50_taxonomy.tsv, \
metadata=hmp50_metadata.tsv, \
output=simple )
The
make.biom()
command creates a file named'hmp50_counts.asv.asv.biom'
.
In R, import the biom file with rbiom.
BioConductor R Packages
rbiom ➡ phyloseq
# An rbiom object
biom <- rbiom::hmp50
# A phyloseq object
physeq <- rbiom::convert_to_phyloseq(biom)
rbiom ➡ SummarizedExperiment
# An rbiom object
biom <- rbiom::hmp50
# A SummarizedExperiment object
se <- rbiom::convert_to_SE(biom)
SummarizedExperiment ➡ rbiom
# `se` is a SummarizedExperiment object
# Convert to rbiom object
biom <- rbiom::as_rbiom(se)
rbiom ➡ TreeSummarizedExperiment
# An rbiom object
biom <- rbiom::hmp50
# A TreeSummarizedExperiment object
tse <- rbiom::convert_to_TSE(biom)
TreeSummarizedExperiment ➡ rbiom
# `tse` is a TreeSummarizedExperiment object
# Convert to rbiom object
biom <- rbiom::as_rbiom(tse)