Calculate the alpha diversity of each sample.
Usage
adiv_table(
biom,
adiv = "shannon",
md = ".all",
tree = NULL,
transform = "none",
ties = "random",
seed = 0,
cpus = NULL
)
adiv_matrix(
biom,
adiv = c("observed", "shannon", "simpson"),
tree = NULL,
transform = "none",
ties = "random",
seed = 0,
cpus = NULL
)
adiv_vector(
biom,
adiv = "shannon",
tree = NULL,
transform = "none",
ties = "random",
seed = 0,
cpus = NULL
)Arguments
- biom
An rbiom object, or any value accepted by
as_rbiom().- adiv
Alpha diversity metric(s) to use. Options are:
c("ace", "berger", "brillouin", "chao1", "faith", "fisher", "simpson", "inv_simpson", "margalef", "mcintosh", "menhinick", "observed", "shannon", "squares"). For"faith", a phylogenetic tree must be present inbiomor explicitly provided viatree=. Setadiv=".all"to use all metrics. Multiple/abbreviated values allowed. Default:"shannon"- md
Dataset field(s) to include in the output data frame, or
'.all'to include all metadata fields. Default:'.all'- tree
A
phyloobject representing the phylogenetic relationships of the taxa inbiom. Only required when computing UniFrac distances. Default:biom$tree- transform
Transformation to apply. Options are:
c("none", "rank", "log", "log1p", "sqrt", "percent")."rank"is useful for correcting for non-normally distributions before applying regression statistics. Default:"none"- ties
When
transform="rank", how to rank identical values. Options are:c("average", "first", "last", "random", "max", "min"). Seerank()for details. Default:"random"- seed
Random seed for permutations. Must be a non-negative integer. Default:
0- cpus
The number of CPUs to use. Set to
NULLto use all available, or to1to disable parallel processing. Default:NULL
Value
adiv_vector()-A named numeric vector.
adiv_matrix()-A matrix of samples x metric. The first column, 'depth', is never transformed.
adiv_table()-A tibble data.frame of alpha diversity values. Each combination of sample/
adivhas its own row. Column names are .sample, .depth, .adiv, and .diversity, followed by any metadata fields requested bymd.
See also
sample_sums() for sample depths.
Other alpha_diversity:
adiv_boxplot(),
adiv_corrplot(),
adiv_stats()
Examples
library(rbiom)
biom <- hmp50[1:5]
adiv_table(biom)
#> # A tibble: 5 × 8
#> .sample .depth .adiv .diversity Age BMI `Body Site` Sex
#> <chr> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <fct>
#> 1 HMP01 1660 shannon 1.74 22 20 Buccal mucosa Female
#> 2 HMP02 1371 shannon 2.59 24 23 Buccal mucosa Male
#> 3 HMP03 1353 shannon 2.95 28 26 Saliva Male
#> 4 HMP04 1895 shannon 3.26 25 23 Saliva Male
#> 5 HMP05 3939 shannon 1.46 27 24 Buccal mucosa Female
biom <- rarefy(biom)
adiv_table(biom, md = NULL)
#> # A tibble: 5 × 4
#> .sample .depth .adiv .diversity
#> <fct> <dbl> <fct> <dbl>
#> 1 HMP01 1353 shannon 1.75
#> 2 HMP02 1353 shannon 2.59
#> 3 HMP03 1353 shannon 2.95
#> 4 HMP04 1353 shannon 3.24
#> 5 HMP05 1353 shannon 1.43
adiv_vector(biom, 'faith')
adiv_matrix(biom)
#> depth observed shannon simpson
#> HMP01 1353 49 1.745200 0.5724740
#> HMP02 1353 75 2.587377 0.8125427
#> HMP03 1353 75 2.950982 0.8936622
#> HMP04 1353 73 3.235844 0.9315730
#> HMP05 1353 44 1.430414 0.5248395
#> attr(,"cmd")
#> [1] "adiv_matrix(biom, c(\"observed\", \"shannon\", \"simpson\"))"
