A convenience wrapper for adiv_table() + stats_table().
Usage
adiv_stats(
biom,
regr = NULL,
stat.by = NULL,
adiv = "Shannon",
split.by = NULL,
transform = "none",
test = "emmeans",
fit = "gam",
at = NULL,
level = 0.95,
alt = "!=",
mu = 0,
p.adj = "fdr"
)Arguments
- biom
An rbiom object, such as from
as_rbiom(). Any value accepted byas_rbiom()can also be given here.- regr
Dataset field with the x-axis (independent; predictive) values. Must be numeric. Default:
NULL- stat.by
Dataset field with the statistical groups. Must be categorical. Default:
NULL- adiv
Alpha diversity metric(s) to use. Options are:
"OTUs","Shannon","Chao1","Simpson", and/or"InvSimpson". Setadiv=".all"to use all metrics. Multiple/abbreviated values allowed. Default:"Shannon"- split.by
Dataset field(s) that the data should be split by prior to any calculations. Must be categorical. Default:
NULL- transform
Transformation to apply. Options are:
c("none", "rank", "log", "log1p", "sqrt", "percent")."rank"is useful for correcting for non-normally distributions before applying regression statistics. Default:"none"- test
Method for computing p-values:
'wilcox','kruskal','emmeans', or'emtrends'. Default:'emmeans'- fit
How to fit the trendline.
'lm','log', or'gam'. Default:'gam'- at
Position(s) along the x-axis where the means or slopes should be evaluated. Default:
NULL, which samples 100 evenly spaced positions and selects the position where the p-value is most significant.- level
The confidence level for calculating a confidence interval. Default:
0.95- alt
Alternative hypothesis direction. Options are
'!='(two-sided; not equal tomu),'<'(less thanmu), or'>'(greater thanmu). Default:'!='- mu
Reference value to test against. Default:
0- p.adj
Method to use for multiple comparisons adjustment of p-values. Run
p.adjust.methodsfor a list of available options. Default:"fdr"
Value
A tibble data.frame with fields from the table below. This tibble
object provides the $code operator to print the R code used to generate
the statistics.
| Field | Description |
| .mean | Estimated marginal mean. See emmeans::emmeans(). |
| .mean.diff | Difference in means. |
| .slope | Trendline slope. See emmeans::emtrends(). |
| .slope.diff | Difference in slopes. |
| .h1 | Alternate hypothesis. |
| .p.val | Probability that null hypothesis is correct. |
| .adj.p | .p.val after adjusting for multiple comparisons. |
| .effect.size | Effect size. See emmeans::eff_size(). |
| .lower | Confidence interval lower bound. |
| .upper | Confidence interval upper bound. |
| .se | Standard error. |
| .n | Number of samples. |
| .df | Degrees of freedom. |
| .stat | Wilcoxon or Kruskal-Wallis rank sum statistic. |
| .t.ratio | .mean / .se |
| .r.sqr | Percent of variation explained by the model. |
| .adj.r | .r.sqr, taking degrees of freedom into account. |
| .aic | Akaike Information Criterion (predictive models). |
| .bic | Bayesian Information Criterion (descriptive models). |
| .loglik | Log-likelihood goodness-of-fit score. |
| .fit.p | P-value for observing this fit by chance. |
See also
Other alpha_diversity:
adiv_boxplot(),
adiv_corrplot(),
adiv_table()
Other stats_tables:
bdiv_stats(),
distmat_stats(),
stats_table(),
taxa_stats()
Examples
library(rbiom)
biom <- rarefy(hmp50)
adiv_stats(biom, stat.by = "Sex")[,1:6]
#> # Model: gam(.diversity ~ Sex, method = "REML")
#> # A tibble: 1 × 6
#> Sex .mean.diff .h1 .p.val .adj.p .effect.size
#> <chr> <dbl> <fct> <dbl> <dbl> <dbl>
#> 1 Female - Male -0.767 != 0 0.00949 0.00949 -0.793
adiv_stats(biom, stat.by = "Sex", split.by = "Body Site")[,1:6]
#> # Model: gam(.diversity ~ Sex, method = "REML")
#> # A tibble: 5 × 6
#> `Body Site` Sex .mean.diff .h1 .p.val .adj.p
#> <fct> <chr> <dbl> <fct> <dbl> <dbl>
#> 1 Buccal mucosa Female - Male -0.560 != 0 0.230 0.441
#> 2 Saliva Female - Male -0.242 != 0 0.231 0.441
#> 3 Stool Female - Male -0.192 != 0 0.331 0.441
#> 4 Anterior nares Female - Male -0.0686 != 0 0.739 0.739
#> 5 Mid vagina NA NA NA NA NA
adiv_stats(biom, stat.by = "Body Site", test = "kruskal")
#> # Model: kruskal.test(.diversity ~ `Body Site`)
#> # A tibble: 1 × 6
#> .stat .h1 .p.val .adj.p .n .df
#> <dbl> <fct> <dbl> <dbl> <int> <int>
#> 1 38.8 > 0 0.0000000767 0.0000000767 49 4
