A convenience wrapper for taxa_table()
+ stats_table()
.
Usage
taxa_stats(
biom,
regr = NULL,
stat.by = NULL,
rank = -1,
taxa = 6,
lineage = FALSE,
unc = "singly",
other = FALSE,
split.by = NULL,
transform = "none",
test = "emmeans",
fit = "gam",
at = NULL,
level = 0.95,
alt = "!=",
mu = 0,
p.adj = "fdr"
)
Arguments
- biom
An rbiom object, such as from
as_rbiom()
. Any value accepted byas_rbiom()
can also be given here.- regr
Dataset field with the x-axis (independent; predictive) values. Must be numeric. Default:
NULL
- stat.by
Dataset field with the statistical groups. Must be categorical. Default:
NULL
- rank
What rank(s) of taxa to display. E.g.
"Phylum"
,"Genus"
,".otu"
, etc. An integer vector can also be given, where1
is the highest rank,2
is the second highest,-1
is the lowest rank,-2
is the second lowest, and0
is the OTU "rank". Runbiom$ranks
to see all options for a given rbiom object. Default:-1
.- taxa
Which taxa to display. An integer value will show the top n most abundant taxa. A value 0 <= n < 1 will show any taxa with that mean abundance or greater (e.g.
0.1
implies >= 10%). A character vector of taxa names will show only those named taxa. Default:6
.- lineage
Include all ranks in the name of the taxa. For instance, setting to
TRUE
will produceBacteria; Actinobacteria; Coriobacteriia; Coriobacteriales
. Otherwise the taxa name will simply beCoriobacteriales
. You want to set this to TRUE whenunc = "asis"
and you have taxa names (such as Incertae_Sedis) that map to multiple higher level ranks. Default:FALSE
- unc
How to handle unclassified, uncultured, and similarly ambiguous taxa names. Options are:
"singly"
-Replaces them with the OTU name.
"grouped"
-Replaces them with a higher rank's name.
"drop"
-Excludes them from the result.
"asis"
-To not check/modify any taxa names.
Default:
"singly"
Abbreviations are allowed.- other
Sum all non-itemized taxa into an "Other" taxa. When
FALSE
, only returns taxa matched by thetaxa
argument. SpecifyingTRUE
adds "Other" to the returned set. A string can also be given to implyTRUE
, but with that value as the name to use instead of "Other". Default:FALSE
- split.by
Dataset field(s) that the data should be split by prior to any calculations. Must be categorical. Default:
NULL
- transform
Transformation to apply. Options are:
c("none", "rank", "log", "log1p", "sqrt", "percent")
."rank"
is useful for correcting for non-normally distributions before applying regression statistics. Default:"none"
- test
Method for computing p-values:
'wilcox'
,'kruskal'
,'emmeans'
, or'emtrends'
. Default:'emmeans'
- fit
How to fit the trendline.
'lm'
,'log'
, or'gam'
. Default:'gam'
- at
Position(s) along the x-axis where the means or slopes should be evaluated. Default:
NULL
, which samples 100 evenly spaced positions and selects the position where the p-value is most significant.- level
The confidence level for calculating a confidence interval. Default:
0.95
- alt
Alternative hypothesis direction. Options are
'!='
(two-sided; not equal tomu
),'<'
(less thanmu
), or'>'
(greater thanmu
). Default:'!='
- mu
Reference value to test against. Default:
0
- p.adj
Method to use for multiple comparisons adjustment of p-values. Run
p.adjust.methods
for a list of available options. Default:"fdr"
Value
A tibble data.frame with fields from the table below. This tibble
object provides the $code
operator to print the R code used to generate
the statistics.
Field | Description |
.mean | Estimated marginal mean. See emmeans::emmeans() . |
.mean.diff | Difference in means. |
.slope | Trendline slope. See emmeans::emtrends() . |
.slope.diff | Difference in slopes. |
.h1 | Alternate hypothesis. |
.p.val | Probability that null hypothesis is correct. |
.adj.p | .p.val after adjusting for multiple comparisons. |
.effect.size | Effect size. See emmeans::eff_size() . |
.lower | Confidence interval lower bound. |
.upper | Confidence interval upper bound. |
.se | Standard error. |
.n | Number of samples. |
.df | Degrees of freedom. |
.stat | Wilcoxon or Kruskal-Wallis rank sum statistic. |
.t.ratio | .mean / .se |
.r.sqr | Percent of variation explained by the model. |
.adj.r | .r.sqr , taking degrees of freedom into account. |
.aic | Akaike Information Criterion (predictive models). |
.bic | Bayesian Information Criterion (descriptive models). |
.loglik | Log-likelihood goodness-of-fit score. |
.fit.p | P-value for observing this fit by chance. |
See also
Other taxa_abundance:
sample_sums()
,
taxa_boxplot()
,
taxa_clusters()
,
taxa_corrplot()
,
taxa_heatmap()
,
taxa_stacked()
,
taxa_sums()
,
taxa_table()
Other stats_tables:
adiv_stats()
,
bdiv_stats()
,
distmat_stats()
,
stats_table()
Examples
library(rbiom)
biom <- rarefy(hmp50)
taxa_stats(biom, stat.by = "Body Site", rank = "Family")[,1:6]
#> # Model: gam(.abundance ~ `Body Site`, method = "REML")
#> # A tibble: 60 × 6
#> .taxa `Body Site` .mean.diff .h1 .p.val .adj.p
#> <fct> <chr> <dbl> <fct> <dbl> <dbl>
#> 1 Bacteroidaceae Mid vagina - Stool -608. != 0 5.43e-10 8.66e-9
#> 2 Bacteroidaceae Saliva - Stool -607. != 0 5.61e-10 8.66e-9
#> 3 Bacteroidaceae Anterior nares - Stool -607. != 0 5.64e-10 8.66e-9
#> 4 Bacteroidaceae Buccal mucosa - Stool -606. != 0 5.77e-10 8.66e-9
#> 5 Streptococcaceae Buccal mucosa - Mid vagina 784. != 0 1.49e- 8 1.78e-7
#> 6 Streptococcaceae Anterior nares - Buccal m… -763. != 0 2.36e- 8 2.01e-7
#> 7 Lactobacillaceae Buccal mucosa - Mid vagina -1049. != 0 3.01e- 8 2.01e-7
#> 8 Lactobacillaceae Mid vagina - Saliva 1049. != 0 3.01e- 8 2.01e-7
#> 9 Lactobacillaceae Anterior nares - Mid vagi… -1048. != 0 3.02e- 8 2.01e-7
#> 10 Streptococcaceae Buccal mucosa - Stool 784. != 0 5.50e- 8 3.30e-7
#> # ℹ 50 more rows