Run statistics on a distance matrix vs a categorical or numeric variable.
Source:R/distmat_stats.r
distmat_stats.Rd
Run statistics on a distance matrix vs a categorical or numeric variable.
Arguments
- dm
A
dist
-class distance matrix, as returned frombdiv_distmat()
orstats::dist()
. Required.- groups
A named vector of grouping values. The names should correspond to
attr(dm, 'Labels')
. Values can be either categorical or numeric. Required.- test
Permutational test for accessing significance. Options are:
"adonis2"
-Permutational MANOVA;
vegan::adonis2()
."mrpp"
-Multiple response permutation procedure;
vegan::mrpp()
."none"
-Don't run any statistics.
Abbreviations are allowed. Default:
"adonis2"
- seed
Random seed for permutations. Must be a non-negative integer. Default:
0
- permutations
Number of random permutations to use. Default:
999
Value
A data.frame with summary statistics from vegan::permustats()
.
The columns are:
- .n -
The size of the distance matrix.
- .stat -
The observed statistic. For mrpp, this is the overall weighted mean of group mean distances.
- .z -
The difference of observed statistic and mean of permutations divided by the standard deviation of permutations (also known as z-values). Evaluated from permuted values without observed statistic.
- .p.val -
Probability calculated by
test
.
R commands for reproducing the results are in $code
.
See also
Other beta_diversity:
bdiv_boxplot()
,
bdiv_clusters()
,
bdiv_corrplot()
,
bdiv_heatmap()
,
bdiv_ord_plot()
,
bdiv_ord_table()
,
bdiv_stats()
,
bdiv_table()
Other stats_tables:
adiv_stats()
,
bdiv_stats()
,
stats_table()
,
taxa_stats()
Examples
library(rbiom)
hmp10 <- hmp50$clone()
hmp10$counts <- hmp10$counts[,1:10]
dm <- bdiv_distmat(hmp10, 'unifrac')
distmat_stats(dm, groups = pull(hmp10, 'Body Site'))
#> # A tibble: 1 × 4
#> .n .stat .z .p.val
#> <int> <dbl> <dbl> <dbl>
#> 1 10 9.61 11.5 0.001
distmat_stats(dm, groups = pull(hmp10, 'Age'))
#> # A tibble: 1 × 4
#> .n .stat .z .p.val
#> <int> <dbl> <dbl> <dbl>
#> 1 10 3.84 3.25 0.021
# See the R code used to calculate these statistics:
stats <- distmat_stats(dm, groups = pull(hmp10, 'Age'))
stats$code
#> grouping <- groups[attr(dm, 'Labels')]
#> set.seed(0)
#>
#> vegan::adonis2(formula = dm ~ grouping, permutations = 999) %>%
#> vegan::permustats() %>%
#> summary() %>%
#> with(data.frame(.stat = statistic, .z = z, .p.val = p)) %>%
#> tryCatch(
#> error = function (e) data.frame(.stat=NA, .z=NA, .p.val=NA),
#> warning = function (w) data.frame(.stat=NA, .z=NA, .p.val=NA) ) %>%
#> data.frame(row.names = NULL, .n = attr(dm, 'Size'), .)