Visualize the number of observations per sample.
Arguments
- biom
An rbiom object, such as from
as_rbiom()
. Any value accepted byas_rbiom()
can also be given here.- rline
Where to draw a horizontal line on the plot, intended to show a particular rarefaction depth. Set to
TRUE
to show an auto-selected rarefaction depth,FALSE
to not show a line, or an integer for a custom position. Default:TRUE
.- counts
Display the number of samples and reads remaining after rarefying to
rline
reads per sample. Default:TRUE
.- labels
Show sample names under each bar. Default:
TRUE
.- y.transform
Y-axis transformation. Options are
"log10"
or"none"
. Default:"log10"
.
Usexaxis.transform
oryaxis.transform
to pass custom values directly to ggplot2'sscale_*
functions.- ...
Additional parameters to pass along to ggplot2 functions. Prefix a parameter name with
r.
to ensure it gets passed to (and only to) geom_hline. For instance,r.color = "black"
ensures only the horizontal rarefaction line has its color set to"black"
.
Value
A ggplot2
plot.
The computed data points and ggplot
command are available as $data
and $code
,
respectively.
See also
Other rarefaction:
rare_corrplot()
,
rare_multiplot()
,
rarefy()
,
rarefy_cols()
,
sample_sums()
Other visualization:
adiv_boxplot()
,
adiv_corrplot()
,
bdiv_boxplot()
,
bdiv_corrplot()
,
bdiv_heatmap()
,
bdiv_ord_plot()
,
plot_heatmap()
,
rare_corrplot()
,
rare_multiplot()
,
stats_boxplot()
,
stats_corrplot()
,
taxa_boxplot()
,
taxa_corrplot()
,
taxa_heatmap()
,
taxa_stacked()
Examples
library(rbiom)
rare_stacked(hmp50)
rare_stacked(hmp50, rline = 500, r.size = 2, r.linetype = "twodash")
fig <- rare_stacked(hmp50, counts = FALSE)
fig$code
#> ggplot(data) +
#> geom_rect(
#> mapping = aes(xmin = .xmin, xmax = .xmax, ymin = .ymin, ymax = .ymax, fill = .group),
#> color = NA ) +
#> geom_hline(
#> yintercept = 1183,
#> color = "red",
#> linetype = "dashed" ) +
#> labs(
#> fill = "Reads",
#> x = "Sample",
#> y = "Sequencing Depth\n(log10 scale)" ) +
#> scale_x_discrete() +
#> scale_y_continuous(
#> breaks = 10^(0:5),
#> minor_breaks = as.vector(2:9 %o% 10^(0:4)),
#> labels = scales::label_number(scale_cut = scales::cut_si("")),
#> expand = c(0, 0),
#> transform = "log10" ) +
#> theme_bw() +
#> theme(
#> text = element_text(size = 14),
#> panel.grid.major.x = element_blank() )